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Purpose: This work aims to develop a computer-aided diagnosis (CAD) to quantify the

extent of pulmonary involvement (PI) in COVID-19 as well as the radiological patterns

referred to as lung opacities in chest computer tomography (CT).

Methods: One hundred thirty subjects with COVID-19 pneumonia who underwent

chest CT at hospital admission were retrospectively studied (141 sets of CT scan

images). Eighty-eight healthy individuals without radiological evidence of acute lung

disease served as controls. Two radiologists selected up to four regions of interest

(ROI) per patient (totaling 1,475 ROIs) visually regarded as well-aerated regions (472),

ground-glass opacity (GGO, 413), crazy paving and linear opacities (CP/LO, 340),

and consolidation (250). After balancing with 250 ROIs for each class, the density

quantiles (2.5, 25, 50, 75, and 97.5%) of 1,000 ROIs were used to train (700),

validate (150), and test (150 ROIs) an artificial neural network (ANN) classifier (60

neurons in a single-hidden-layer architecture). Pulmonary involvement was defined

as the sum of GGO, CP/LO, and consolidation volumes divided by total lung

volume (TLV), and the cutoff of normality between controls and COVID-19 patients

was determined with a receiver operator characteristic (ROC) curve. The severity of

pulmonary involvement in COVID-19 patients was also assessed by calculating Z scores

relative to the average volume of parenchymal opacities in controls. Thus, COVID-19

cases were classified as mild (<cutoff of normality), moderate (cutoff of normality ≤

pulmonary involvement < Z score 3), and severe pulmonary involvement (Z score ≥3).
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Results: Cohen’s kappa agreement between CAD and radiologist classification was

81% (79–84%, 95% CI). The ROC curve of PI by the ANN presented a threshold of

21.5%, sensitivity of 0.80, specificity of 0.86, AUC of 0.90, accuracy of 0.82, F score of

0.85, and 0.65 Matthews’ correlation coefficient. Accordingly, 77 patients were classified

as having severe pulmonary involvement reaching 55 ± 13% of the TLV (Z score

related to controls ≥3) and presented significantly higher lung weight, serum C-reactive

protein concentration, proportion of hospitalization in intensive care units, instances of

mechanical ventilation, and case fatality.

Conclusion: The proposed CAD aided in detecting and quantifying the extent of

pulmonary involvement, helping to phenotype patients with COVID-19 pneumonia.

Keywords: COVID-19 pneumonia, radiomics, computer-aided diagnosis, deep learning, quantitative chest

CT-analysis

INTRODUCTION

Chest computed tomography (CT) has been widely used to assess
COVID-19 pneumonia and is a key tool for the detection of lung
abnormalities and for evaluating the extension and severity of
pulmonary involvement (PI) (1, 2).

Patients with COVID-19 usually exhibit radiological patterns
classified as ground-glass opacity (GGO), crazy paving (CP),
linear opacities (LO), and consolidation (1, 2). Reticular opacities
(RO), characterized by coarse linear, curvilinear opacities, fibrotic
streaks, and subpleural lines, may be seen in late phases, often
associated with GGO and parenchymal distortion (1, 3, 4).

Some attempts have been made to achieve an automatic
quantification of PI in chest CT, most of them based on texture
analysis techniques. Classic statistical methods may include
the parameters of first-, second-, and third-order statistics
and other composite or custom-made texture parameters (5–
7). Their disadvantages include the extensive training required
before automated or semiautomated segmentation, evaluation
of the potential usefulness of a particular parameter only
after implementation, and cumbersome and time-consuming
adaptation to new segmentation tasks.

In the present study, we propose a method for objective
and automated quantification and classification of COVID-19-
related pneumonia from chest CT using a simple computer-
aided diagnosis (CAD) system, considering the different
radiological CT lung patterns commonly used in clinical practice.
Determining the quantity, type, and distribution of abnormalities
by an automated tool should prove helpful in clinical practice
by aiding in noninvasive diagnostic determination, detecting
change in disease over symptom onset, and stratifying the risk
of hospitalization in the intensive care unit (ICU), the necessity
of mechanical ventilation, or case fatality.

MATERIALS AND METHODS

Study Design and Patients
One hundred thirty consecutive patients with COVID-
19, confirmed with reverse-transcription polymerase chain
reaction (RT-PCR) for COVID-19 in nasal-pharyngeal swab,

admitted to three hospitals between April to June 2020, who
underwent chest CT scans and presented with pneumonia,
were retrospectively studied. Ten patients underwent more
than one CT scan, totaling to 141 scans. The chest CTs of
88 healthy subjects served as controls. Scans with severe
motion artifacts and contrast-enhanced scans were excluded.
Figure 1 shows the patient enrollment and CT scan selection
flow chart.

The Research Ethics Committee approved the
study that complied with the current national and
international standards.

Clinical and Laboratory Data, Definitions,
and Outcomes
The clinical and laboratory findings of each patient were recorded
at admission. CT was performed within 12 h after the clinical
evaluation and laboratory findings.

Serum C-reactive protein concentration collected at the
admission was used as a marker of systemic inflammation. ICU
admission, invasive ventilation, and in-hospital case fatality were
considered as our clinical outcomes.

Chest Computed Tomography Acquisition
CT scans were performed on a 64-channel multislice (Brilliance
40 scanner, Philips Medical Systems, Cleveland, OH, USA, and
General Electrics Lightspeed VCT, Chicago, IL, USA), a 128-
channel multislice dual-source CT system (Somatom Definition
Flash, Siemens, Forchheim, Germany), or a 16-channel multislice
(Emotion 16 CT, Siemens, Erlangen, Germany). The acquisitions
were gathered with the patients in supine position with 120 kV
and 120–300mA, slice thickness ranging from 1 to 2mm with
50% superposition, and 512 × 512, 768 × 768, or 1,024 × 1,024
voxels matrix.

Reconstruction algorithms were B50f (49 subjects), B60f (1),
B70s (17), C (1), FC13 (5), FC86 (2), I50f2 (1), L (80), LUNG (69),
and SOFT (4), depending on the CT manufacture.

Lung and Airway Segmentation
The lung parenchyma and the airways were segmented from
chest CT scans using the Region Growing algorithm using
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FIGURE 1 | Flow chart diagram showing the patient enrollment and computed tomography selection process. CT, computed tomography; COVID-19, corona virus

disease-19; RT-PCR, reverse-transcription polymerase chain reaction.

the module Chest Imaging Platform (3D Slicer version 4.8.1).
Then, the region of interest (ROI) selected by the algorithm
was edited by visual inspection (8). Thereafter, all images
were exported to an in-house-developed software (Quantitative
Lung Image, QUALI) written in MATLAB R© (MathWorks R©,
Natick, MA, USA), and airways were subtracted from the
lung ROI.

Image Rescaling
After segmentation, CT images were rescaled so that
images from different CT scans could be comparable. For
that purpose, a circular ROI was positioned outside the
body of the individuals (HUAir) and another, with the
same shape and area, was positioned in the descending
aorta (HUAorta).

Then, the average density value present within both
ROIs was calculated, and a linear regression was performed,
using the least squares method, using the mean HUAir

and HUAorta values as dependent variables and −1,000 and
+50 HU, respectively, as independent variables. Scaling was
performed by multiplying all voxels present in the lung
parenchyma by the angular coefficient together with the
addition of the intercept (9, 10). Both the selection of the
ROIs and the scaling of the voxels were carried out using
QUALI Software.

Visual Classification of Radiological
Patterns in COVID-19 CT Scans
Two chest radiologists blinded to patient identification, clinical
data, and outcomes independently selected up to four ROI per
COVID-19 patient visually classified as well-aerated regions,
GGO, CP/LO, and consolidation. The ROI consisted of a circle

with a fixed radius of 4mm, with a spanning area of about 30
voxels in each CT section.

Development of the Supervised Neural
Network Architecture
From all ROIs belonging to the same radiological pattern class,
a density histogram was calculated, and the respective quantiles
(2.5, 25, 50, 75, and 97.5%) were used to train a supervised
artificial neural network (ANN). Initially, the number of ROIs
consensually assigned to well-aerated regions (472 ROIs), GGO
(413 ROIs), CP/LO (340 ROIs), and consolidation (250 ROIs),
totaling 1,475 ROIs, were balanced by the lowest number of
ROIs (250 ROIs). Thus, 1,000 ROIs were used for ANN training
(700 ROIs), validation (150 ROIs), and test (150 ROIs). In
order to keep the same ROIs for ANN architecture assessment,
ROIs were drawn to undergo training, validation, and test
only once since the same groups were used in each training,
validation, and test session. No feature scale was necessary since
all data are expressed in the same scale in Hounsfield units
and the training algorithm used the scaled conjugate gradient
backpropagation (11). The training stopped when the validation
error increased for six iterations, and the best validation
performance was obtained based on the minimization of
the cross-entropy.

Several architectures were tested with a single hidden layer
with 20 up to 100 neurons. The overall and intraclass agreement
of the balanced test confusion matrix between each respective
ROI quantile consensually classified by radiologists and by
the ANN classifier was assessed and used to define the best
ANN architecture.

To evaluate the ANN classifier’s final performance, the
confusion matrix, the receiver operator characteristic (ROC)
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curve for each class, and the relationship between cross-
entropy and ANN epochs in training, validation, and test sets
were assessed.

Having established the qualitative equivalence of ANN
classifier and expert groupings, all results were verified with
expert visual validation (Figure 2). Additionally, a grid of regular
hexagons with radii of 2, 3, and 4mm, accounting for 12 up
to 42 voxels, was created. In the overlapping region of each
radiologist ROI and hexagons (Figure 2C), the local histogram
quantiles were computed from the voxels contained in the
hexagon and served as an impute to ANN classifier. The best
hexagon dimension was computed with the unweighted Cohen’s
kappa test between the ANN classification and their respective
ROI classification attributed by the radiologist. In the assessment
of the overlapped regions by radiologist’s ROI, if there were
hexagons belonging to different classes into a given ROI, themost
prevalent classification would be used as the final classification of
the voxels for comparison purposes (Figure 2D).

CT Scan Quantitative Analysis and CAD
Report
The previously defined regular hexagon grid was used to group
voxels in the whole-lung CT scan. The number of voxels
belonging to each of the parenchymal classes was calculated
across the whole lungs. The voxels identified as vessels were
included as normal to account for the total lung volume.

Total lung volume (TLV), i.e., the sum of air plus tissue
volume, was calculated as:

TLV(ml) = (pixel size)2 × slice thickness

× total number of pixels of the whole lung (1)

Lung weight, in grams, was calculated as:

Lung weight (g) = [(HU−HUAir)/(HUAorta −HUAir)]

×voxel volume×1.04 g/ml (2)

FIGURE 2 | A representative CT scan axial image of a COVID-19 patient (A), the region of interest (ROI), in green, classified by one radiologist as ground glass

opacities (GGO) (B), and the overlapping of radiologist’s ROI and the grid of regular hexagons with radii of 4mm (C), with each grid already classified as well-aerated

regions (blue), GGO (yellow), and CP/LO (orange) areas. (D) Amplification of the overlapped region marked with the white square in (C). Note that, within ROI, there

are voxels of two different classes, GGO in yellow and CP/LO in orange. For comparison purposes, the ROI region is classified as the most prevalent voxel class, in

this case as GGO class.

FIGURE 3 | Evaluation of the artificial neural network (ANN) classifier performance. (A) Confusion matrix from the comparison between the ANN and radiologists’

classification of well-aerated (blue line), ground glass opacities (GGO, yellow line), CP/LO (orange), and consolidation (gray) in training (first row and column), validation

(first row, second column), test (second row, first column), and overall (second row, second column) sets. (B) Each respective receiver operator characteristic curve for

well-aerated regions (blue line), GGO (yellow line), CP/LO (orange) and consolidation (gray) ANN classification in training (first row and column), validation (first row,

second column), test (second row, first column), and overall (second row, second column) sets. (C) Cross-entropy at each epoch in training (blue line), validation

(green line), and test (red line) sets. Dotted lines represent the best validation performance determined based on the minimization of the cross-entropy at epoch 6.
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where 1.04 mg/ml means lung tissue density, and HU is voxel
density in HU scale (9).

Determination of PI
After CAD classification of parenchymal opacities, the
extent of PI was calculated as the cumulative volumetric
sum of GGO, CP/LO, and consolidation adjusted
to TLV.

The threshold of parenchymal opacities between controls
and COVID-19 was determined with a ROC curve from
the histogram of parenchymal opacities in the control
group and COVID-19 patients. The area under the ROC
curve (AUC) was calculated, and the threshold sensibility,
specificity, accuracy, positive and negative predictive
values, F score (a measure of ANN’s precision and
recall balance), and Matthews correlation coefficient were
also computed.

To evaluate the severity of PI in COVID-19, we used the
Z score in relation to the average volume of lung parenchyma
opacities in the control group. Thus, the Z score was used to
describe the position of the calculated volume of pneumonia
in COVID-19 patients in terms of its distance from the mean
calculated volume of GGO plus CP/LO and consolidation in the

control group. This distance is expressed in terms of standard
deviation units. Accordingly, the Z score of COVID-19 patients is
positive if the value lies above the mean volume of GGO, CP/LO,
and consolidation in the control group and negative if it lies
below it.

Thereafter, patients with COVID-19 were classified as having
mild (PI < ROC threshold), moderate (ROC threshold ≤ PI < 3
Z score), or severe (PI ≥ 3 Z score) PI.

Statistical Analysis
The normality of the data (Kolmogorov–Smirnov test with
Lilliefors’ correction) and the homogeneity of variances
(Levene median test) were tested. Since both conditions
were always satisfied, all data are presented as mean and
standard deviation.

A one-way ANOVA test followed by Bonferroni’s post hoc
test assessed the statistical differences among patients with mild,
moderate, and severe COVID-19 pneumonia. A p-value < 0.05
was defined as statistically significant. All statistical analyses
were performed using Matlab R© software (MathWorks R©, Natick,
MA, USA).

FIGURE 4 | Frequency histograms of the densities expressed in Hounsfield units from all regions of interest visually assigned as well-aerated regions (colored in blue),

ground glass opacities (GGO, yellow), crazy paving and linear opacities (CP/LO, orange), and consolidation (light gray). Note that, with the increase in the radius of the

regular hexagon, there is an increase in the number of voxels and that, although there is no significant change in the average density values, there is an important

increase in the dispersion of voxel densities. This appears to contribute to a reduction in the artificial neural network classifier performance.
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RESULTS

The ANN architecture with a single hidden layer of 60 neurons
showed the best agreement in the confusion test matrix among
the other architectures tested, with an overall agreement of
86% being 100% for well-aerated regions, 76% for GGO,
72% for CP/LO, and 100% for consolidation (Figure 3A).
The architecture with 40 and 100 neurons presented overall
agreements of 66 and 74%, respectively. Despite that the
architecture with 20 and 80 neurons presented a similar overall
agreement, a reduction in the agreement of well-aerated regions
(from 100 to 98 and 95%) and consolidation (from 100 to 95
and 94%) was observed in 60-, 80-, and 20-neuron architectures,
respectively. No improvement in the performance of the ANN
classifier was observed with the addition of a second neuron layer.

TABLE 1 | Agreement between all (1,475) consensual radiologists’ regions of

interest (columns) and the supervised neural network (ANN) classifier with the

regular hexagon grid of radii 2 (rows) for the 1,000 ROIs used to train, test, and

validate Quantitative Lung Image Deep Learning software.

Consensual radiologists’ classification

Well aerated GGO CP/LO Consolidation

Well aerated 464 (98%) 1 0 0

ANN classifier GGO 7 335 (81%) 68 2

CP/LO 1 76 239 (70%) 16

Consolidation 0 1 33 232 (93%)

The overall strength of agreement as evaluated by Cohen’s kappa test was 81% (79–84%,

95% CI). Data between parentheses are the agreement for each radiological pattern. Bold

values represent concordance between consensus radiology and ANN classifier.

The ROC curve from each radiological pattern is presented in
Figure 3B. The classifier performance was much better for well-
aerated regions and consolidation, with an AUC of 1.00 and
0.99, respectively. The performance for GGO and CP/LO, despite
being lower, was quite acceptable with an AUC of 0.94 and 0.91,
respectively. The best validation performance occurred at epoch
6 (Figure 3C).

The CT density histogram of ROIs visually assigned as well-
aerated regions, GGO, CP/LO, and consolidation in COVID-
19 patients is depicted in Figure 4. Additionally, the histograms
from overlapped regions with regular hexagons with radii
of 2, 3, and 4mm are also presented. The best overall
agreement between the neural network and the radiologists’ ROIs
occurred with the 2-mm-radius hexagon with an unweighted
Cohen’s kappa of 81% (79–84%, 95% CI) when compared
to the hexagons of 3-mm radius (76%, 79–84%, 95% CI)
and 4-mm radius (72%, 79–84%, 95% CI). Thus, the 2-mm-
radius hexagon presented an agreement of 98% for well-
aerated regions, 81% for GGO, 70% for CP/LO, and 93% for
consolidation (Table 1).

Figure 5A presents the histogram of parenchymal opacities
in controls and COVID-19 patients. Accordingly, the ROC
curve determined an optimal threshold of 21.5%, with sensitivity
of 0.80, specificity of 0.86, AUC of 0.90, accuracy of 0.82,
F score of 0.85, and Matthews’ correlation coefficient of 0.65
(Figure 5B).

In controls, the volume related to all parenchymal opacities
was 16 ± 6%, with being 12 ± 6% classified as GGO, 3 ± 1%
as CP/LO, and 1 ± 0.3% as consolidation that represent small
bronchi and peribronchial vessels and possible partial volume
effects of pleural or diaphragm interfaces as can be seen in
Figure 6 (uppermost panels).

FIGURE 5 | Histograms of the frequency of occurrence of parenchymal opacities in the control group (light green) and in patients with COVID-19 (pink). Right panel:

receiver operator characteristic curve with the area under the curve (AUC) hatched in light green and pink. The vertical lines mark the normality cutoff (equivalent to

21% of total lung volume represented by pulmonary opacities) and the Z score = 3 (equivalent to 33% of the total lung volume and used to classify SSc patients as

with severe pulmonary involvement). Between the normality cutoff up to Z score < 3, COVID-19 patients were classified as with moderate pulmonary involvement. The

use of parenchymal opacities as an indicator of pulmonary involvement presented 0.80 sensitivity, 0.86 specificity, with an AUC of 0.90, accuracy of 0.82, 0.90

positive predictive value and 0.73 negative predictive value, F score of 0.85, and Matthews correlation coefficient of 0.65.
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FIGURE 6 | The summary glyph (right column) to the underlying 3D scan data (middle column) and CT images in axial and coronal slices (left column) in a

representative case from the control group (row A) and COVID-19 with mild (row B), moderate (row C), and severe (row D) pneumonia involvement. In the glyph (right

column), the first letter (R/L) indicates the right and left lung, the second letter (U/M/L) denotes, respectively, the upper, middle, and lower lung zones.

The final CAD reports from four representative subjects
(control, mild, moderate, and severe COVID-19 PI) are presented
in Figure 6.

Seventy-seven chest CT images of COVID-19 patients were
classified as presenting severe PI (55± 13% of the TLVwith GGO
+ CP/LO + consolidation), while 36 (25%) and 28 (20%) were
classified as just moderate (27± 4%) or mild (17± 3%) (Table 2).
In patients with severe PI, pneumonia was mainly characterized
by GGO (35 ± 10%) and CP/LO (14 ± 7%) with just 5 ± 4%

of the TLV being assigned as consolidation. Furthermore, the
degree of PI was fairly different from that observed in patients
with moderate or mild PI (p < 0.001) (Table 2).

COVID-19 patients classified as having a severe PI were older
than those with mild PI (65 ± 16 vs. 54 ± 17 years, respectively)
and presented a significant reduction in TLV (3,639 ± 931 vs.
4,890 ± 704 in moderate and 5,247 ± 1,067ml in mild COVID-
19 pneumonia), significant increase in lung weight (1,037 ± 251
vs. 935 ± 143 and 799 ± 159 g, respectively), and higher serum

Frontiers in Medicine | www.frontiersin.org 7 December 2020 | Volume 7 | Article 577609

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Carvalho et al. CAD to Quantify COVID-19 Pneumonia Severity

TABLE 2 | COVID-19 and controls demographic and computer-aided diagnosis

(CAD) quantitative data, laboratory parameters and clinical outcomes.

COVID-19

N = 130

Controls

N = 88

P value

Severe

N = 71

Moderate

N = 32

Mild

N = 27

Demographic data

Sex (male/female) 51/20 20/12 16/11 24/64

Age (years) 65 ± 16 58 ± 15 54 ± 17 59 ± 21 0.006b

BMI (kg/m2 ) 28 ± 5 29 ± 5 27 ± 5 26 ± 4

CAD data* N = 77 N = 36 N = 28

Total lung volume

(ml)

3,639 ±

931

4,905 ±

782

5,266 ±

1,030

4,411 ±

1,035

<0.001a,b

Lung weight (g) 1,037 ±

251

928 ± 151 795 ± 152 628 ± 166 <0.001b

0.03a,c

Pulmonary

involvement (%)

55 ± 13 27 ± 4 17 ± 3 16 ± 6 <0.001a,b,c

Well aerated (%) 45 ± 13 73 ± 4 83 ± 3 84 ± 6 <0.001a,b,c

GGO (%) 35 ± 10 20 ± 3 11 ± 3 12 ± 6 <0.001a,b,c

CP/LO (%) 14 ± 7 6 ± 2 4 ± 1 3 ± 1 <0.001a,b

Consolidation (%) 5.0 ± 4 1.5 ± 0.5 1.0 ± 0.2 1.0 ± 0.3 <0.001a,b

Laboratory data N = 71 N = 32 N = 27

White blood count

(×103/µl)

6.4 ± 3.0 4.4 ± 1.9 5.6 ± 1.5 – 0.002a

Lymphocytes

count (×103/µl)

1.2 ± 1.1 1.0 ± 0.7 1.3 ± 0.6 –

Lactate

dehydrogenase

(U/L)

334 ± 161260 ± 159 266 ± 112 –

CRP (mg/L) 64 ± 80 23 ± 74 4 ± 5 – 0.03a

<0.001b

GOT (U/L) 44 ± 30 34 ± 22 33 ± 21 –

GPT (U/L) 41 ± 33 37 ± 33 31 ± 28 –

Creatinine (mg/dl) 1.0 ± 0.4 1.2 ± 1.6 1.0 ± 0.3 –

Clinical outcome N = 71 N = 32 N = 27

Symptom onset

(days)

7.7 ± 4.6 5.1 ± 3.4 6.0 ± 4.4 0.015a

ICU (%) 27% 19% 22% –

i-MV (%) 14% 9% 15% –

Case fatality (%) 11% 6% 0%

aSevere vs. moderate.
bSevere vs. mild.
cModerate vs. mild.

Data are shown as mean ± one standard deviation. Significant p-values (<0.05) are

shown in italics.

CRP, C-reactive protein; GOT, glutamic oxaloacetic transaminase; GPT, glutamic pyruvic

transaminase; TLV, total lung volume (in ml); lung weight, whole lung tissue fraction (in

g); GGO, volume related to ground glass opacities adjusted to TLV; CP/LO, volume

related to crazy paving and linear opacities adjusted to TLV; consolidation, volume related

to consolidation adjusted to TLV; CRP, serum C-reactive protein concentration; ICU,

intensive care unit; i-MV, invasive mechanical ventilation.

*Data from COVID-19 refer to 141 CT scan series.

C-reactive protein concentrations at admission (62± 79 in severe
vs. 23 ± 73 in moderate and 4 ± 5 mg/dl in mild COVID-19
pneumonia). Moreover, a higher prevalence of hospitalization in
ICU (31 vs. 20 and 21%), necessity of mechanical ventilation

(18 vs. 9 and 14%), and case fatality (11 vs. 6 and 0%) was
observed when compared to moderate and mild PI, respectively
(Table 2).

Figure 7 shows a glyph mosaic of 88 CT scans from the
control group and 141 from the 130 COVID-19 patients. The
regional distribution of well-aerated regions, GGO, CP/LO, and
consolidation can be easily determined in each glyph. The
division into the different classes of evolution since the onset of
symptoms follows a previous report (4).

DISCUSSION

We developed a CAD to quantify the extent of PI and to
identify the most frequent radiological patterns in COVID-19
pneumonia. For that, a classifier based on a supervised ANN
was trained, validated, and tested to classify radiological patterns
previously selected and consensually classified by two specialized
chest radiologists.

Different ANN architectures were tested using the degree of
agreement between the ANN and the radiologists. The best
validation performance was determined based on the
minimization of the cross-entropy, and the performance of
the ANN classifier was evaluated with the confusion matrix of
the test set as well as from the ROC curve of each radiological
pattern between the ANN and the radiologists’ classification
(Figure 3).

After establishing the best ANN architecture and
characterizing the classifier performance, a CADwas constructed
to quantify different radiological opacity patterns in a group of
voxels clustered into a regular hexagon grid. Thus, we tested the
effect of hexagon dimensions on the performance of the classifier
since increasing the dimension would represent more noise due
to an expected increase in the dispersion of voxel densities and
therefore of the quantiles used as input for the ANN classifier
(Figure 4). In fact, such effect was demonstrated, and the
hexagon with a radius of 2mm seemed to be the best dimension
for grouping voxels maintaining a good performance of the
classifier, although there was a slight reduction in agreement
both in overall and within classes (Table 1) when compared
to ANN performance in the confusion matrix. However, there
is still a very significant and promising agreement and, even
with the simplicity of the neural network architecture, the
performance of the proposed classifier was quite similar to other
more complex classifiers already presented in the literature
(5, 6, 12).

The extent of PI has been used to phenotype patients with
COVID-19 in profiles with greater involvement, “H” profile, that
in general presents with greater elastance and intrapulmonary
shunt. These patients also have a higher lung weight and tend to
require more aggressive clinical management (13–15).

Our CAD was able to determine the extent of the PI and
separate controls from COVID-19 patients with great sensitivity
and specificity based on the ROC curve (Figure 5). The most
severe cases of COVID-19 patients were more prevalent in the
later stages of the disease (symptom onset > 9 days; Figure 7),
required care in an ICU and mechanical ventilation, and showed
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FIGURE 7 | Glyphs of all CT scans of 88 controls (upper panel) and 141 COVID-19 CT scans (lower panel). In the control group, glyphs were sorted by the extent of

parenchymal opacities related to ground glass opacities (GGO), CP/LO, and consolidation. Note that just 11 (12%) subjects presented some parenchymal opacities,

whereas in just one subject (1%) such opacities presented a Z score higher than 3. Also note that there is a clear predominance of GGO in controls. In COVID-19,

glyphs were sorted by days of symptom onset and by the extent of pulmonary involvement with the three classified groups: severe (light red cluster), moderate (light

yellow cluster), and mild (light green cluster). Patients’ glyphs clearly demonstrate the spectrum of parenchymal abnormalities showing a variety of GGO, CP/LO, and

consolidation. Note the predominance of yellow and orange (GGO and CP/LO, respectively) in patients classified as presenting severe pulmonary involvement and

with longer time since symptom onset. There are few “normal” subjects (22%) in the COVID-19 database, and therefore only a minority of glyphs are predominantly

blue all over the lung.

greater case fatality (Table 2). Lung weight was also greater in
the most severe COVID-19 pneumonia (Table 2), with GGO,
CP/LO, and consolidation representing, altogether, 76 ± 10% of
the total lung weight.

The worst performance of our CAD was related to the
differentiation between GGO and CP/LO, with the highest
misclassification, when the 2-mm-radius hexagon was used,
occurring between these two classes. Accordingly, 68 CP/LO
cases were misclassified by the CAD as GGO and 76 GGO
as CP/LO (Table 1). The overlapping zone between GGO and
CP/LO and the important dispersion of voxel densities (Figure 4)
are probably related to the presence of GGO in the background of
CP/LO (3), contributing to reduced ANN performance between
these classes. In addition, it is possible that the separation
betweenGGO andCP/LO depends on the scale used for sampling

purposes. In fact, a hexagon with a larger radius, therefore
grouping a greater number of voxels, tended to reduce the
agreement for GGO (from 81 to 61% for hexagons with 2-
mm and 4-mm radii, respectively), whereas it increased the
concordance for CP/LO (from 70 to 80% for hexagons of 2-mm
and 4-mm radii, respectively).

However, it is important to stress that the classification errors
between GGO and CP/LO do not seem to significantly influence
the computation of the extent of PI. Thus, it is possible that
only more complex methods that use the texture pattern of ROIs,
such as convolutional neural networks, can precisely distinguish
between GGO and CP/LO (16, 17). Since we opted for a simple
and computationally less demanding method, we suggest that the
neural network proposed herein may be sufficient to quantitate
the extent of COVID-19 pneumonia. In addition, a 70%
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agreement level is considered to be reasonable in the classification
of different radiological standards (5) and was achieved in all
radiological patterns examined in our study (18–20).

The mosaic of the glyphs from 88 CT scans from the
control group and 141 from the COVID-19 patients summarizes
information from 35 gigabytes of CT scan data and clearly
demonstrates the difference between these two groups in terms
of pulmonary aeration and even severity of PI (Figure 7). Even
at this resolution, the glyphs provide a succinct overview of
the entire database of subjects and highlight the easiness of
pinpointing the intra- and intersubject disease distribution.

Some characteristics of our CAD should be highlighted. The
ANN classifier was trained with information extracted from
the same database of the image to be processed. This likely
mitigated possible bias related to reconstruction algorithms or
even artifacts attributed to CT acquisition parameters, such as
voltage, amperage, and field of view. In spite of that, the inclusion
of more heterogeneous pulmonary opacification patterns in the
database should be considered in future studies in order to
improve the ANN classifier capacity.

Although the proposed ANN was not tested in the clinical
practice scenario, the CT scan images used to train and test
the ANN algorithm were quite heterogeneous, using several
acquisition protocols and about eight kernels belonging to three
different manufacturers. However, further studies evaluating the
usefulness of the proposed ANN in radiological practice, as well
as studies including non-COVID-19 pneumonia patients, are still
necessary for the final assessment of the clinical viability of a
CAD platform in the routine of radiology services. In fact, future
studies using a similar ANN architecture could be performed to
identify highly suspicious COVID-19 chest CT images. Certainly,
samples from non-COVID-19 must be included in the database
for new ANN training, validation, and test sets.

Furthermore, in the face of the high capacity for information
synthesis and easy interpretation of quantitative results, the
computational time required for processing a whole-lung CT
image is quite low (no more than 60 s). Much of the time expense
is still in the lung segmentation stage (2min in most cases, but
reaching more than 10min in cases where there is consolidation
in the subpleural regions). Accordingly, the proposed CAD
still needs some improvements in imaging pre-processing to
simplify the whole pipeline process and become feasible at the
clinical scenario.

Finally, the CAD proposed in the present study seems to
be able to identify and quantify the extent of pulmonary
involvement, helping to phenotype patients with COVID-19
pneumonia. However, further studies are necessary to investigate
the association between the extent of pulmonary involvement
and the clinical outcomes or even inflammatory markers.

TAKE-HOME MESSAGE

• The proposed deep learning CAD seems to be able to identify
and quantify the extent of pulmonary involvement, helping to
phenotype patients with COVID-19 pneumonia.

• Patients with severe COVID-19 pulmonary involvement,
as determined by the proposed CAD, presented higher

lung weight and C-reactive protein at admission and more
frequently required invasive ventilation and intensive care unit
hospitalization with higher case fatality.
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