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Abstract
In addition to traditional tasks such as prediction, classification and translation, deep learning is receiving growing attention

as an approach for music generation, as witnessed by recent research groups such as Magenta at Google and CTRL

(Creator Technology Research Lab) at Spotify. The motivation is in using the capacity of deep learning architectures and

training techniques to automatically learn musical styles from arbitrary musical corpora and then to generate samples from

the estimated distribution. However, a direct application of deep learning to generate content rapidly reaches limits as the

generated content tends to mimic the training set without exhibiting true creativity. Moreover, deep learning architectures

do not offer direct ways for controlling generation (e.g., imposing some tonality or other arbitrary constraints). Further-

more, deep learning architectures alone are autistic automata which generate music autonomously without human user

interaction, far from the objective of interactively assisting musicians to compose and refine music. Issues such as control,

structure, creativity and interactivity are the focus of our analysis. In this paper, we select some limitations of a direct

application of deep learning to music generation and analyze why the issues are not fulfilled and how to address them by

possible approaches. Various examples of recent systems are cited as examples of promising directions.

Keywords Deep learning � Music � Generation � Challenges � Directions � Control � Structure � Creativity �
Interactivity

1 Introduction

1.1 Deep learning

Deep learning has become a fast-growing domain and is

now used routinely for classification and prediction tasks,

such as image and voice recognition, as well as translation.

It emerged about 10 years ago, when a deep learning

architecture significantly outperformed standard techniques

using handcrafted features on an image classification task

[21]. We may explain this success and reemergence of

artificial neural networks architectures and techniques by

the combination of:

1. technical progress, such as: convolutions, which

provide motif translation invariance [4], and LSTM

(Long Short-Term Memory), which resolved ineffi-

cient training of recurrent neural networks [22];

2. availability of multiple datasets;

3. availability of efficient and cheap computing power,

e.g., offered by graphics processing units (GPU).

There is no consensual definition of deep learning. It is a

repertoire of machine learning (ML) techniques, based on

artificial neural networks.1 The common ground is the term

deep, which means that there are multiple layers processing

multiple levels of abstractions, which are automatically

extracted from data, as a way to express complex repre-

sentations in terms of simpler representations.

Main applications of deep learning are within the two

traditional machine learning tasks of classification and

prediction, as a testimony of the initial DNA of neural

networks: logistic regression and linear regression. But a

growing area of application of deep learning techniques is
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the generation of content: text, images and music, the focus

of this article.

1.2 Deep learning for music generation

The motivation for using deep learning, and more generally

machine learning techniques, to generate musical content is

its generality. As opposed to handcrafted models for, e.g.,

grammar-based [37] or rule-based music generation sys-

tems [8], a machine learning-based generation system can

automatically learn a model, a style, from an arbitrary

corpus of music. Generation can then take place by using

prediction (e.g., to predict the pitch of the next note of a

melody) or classification (e.g., to recognize the chord

corresponding to a melody), based on the distribution and

correlations learnt by the deep model which represent the

style of the corpus.

As stated by Fiebrink and Caramiaux [12], benefits are

as follows: (1) It can make creation feasible when the

desired application is too complex to be described by

analytical formulations or manual brute force design and

(2) learning algorithms are often less brittle than manually

designed rule sets and learned rules are more likely to

generalize accurately to new contexts in which inputs may

change.

1.3 Challenges

A direct application of deep learning architectures and

techniques to generation, although it could produce

impressing results,2 suffers from some limitations. We

consider here:3

• Control, e.g., tonality conformance, maximum number

of repeated notes, rhythm,;

• Structure, versus wandering music without a sense of

direction;

• Creativity, versus imitation and risk of plagiarism;

• Interactivity, versus automated single-step generation.

1.4 Related work

A comprehensive survey and analysis by Briot et al. of

deep learning techniques to generate musical content is

available in a book [2]. In [20], Herremans et al. propose a

function-oriented taxonomy for various kinds of music

generation systems. Examples of surveys about AI-based

methods for algorithmic music composition are by Papa-

dopoulos and Wiggins [34] and by Fernández and Vico

[11], as well as books by Cope [3] and by Nierhaus [29]. In

[17], Graves analyzes the application of recurrent neural

networks architectures to generate sequences (text and

music). In [12], Fiebrink and Caramiaux address the issue

of using machine learning to generate creative music. We

are not aware of a comprehensive analysis dedicated to

deep learning (and artificial neural networks techniques)

that systematically analyzes limitations and challenges,

solutions and directions, in other words, that is problem-

oriented and not just application-oriented.

1.5 Organization

The article is organized as follows: Section 1 (this section)

introduces the general context of deep learning-based

music generation and lists some important challenges. It

also includes a comparison to some related work. The

following sections analyze each challenge and some solu-

tions, while illustrating through examples of actual sys-

tems: control/Sect. 2, structure/Sect. 3, creativity/Sect. 4

and interactivity/Sect. 5.

2 Control

Musicians usually want to adapt ideas and patterns bor-

rowed from other contexts to their own objective, e.g.,

transposition to another key, minimizing the number of

notes. In practice, this means the ability to control gener-

ation by a deep learning architecture.

2.1 Dimensions of control strategies

Such arbitrary control is actually a difficult issue for cur-

rent deep learning architectures and techniques, because

standard neural networks are not designed to be controlled.

As opposed to Markov models which have an operational

model where one can attach constraints onto their internal

operational structure in order to control the generation,4

neural networks do not offer such an operational entry

point. Moreover, the distributed nature of their represen-

tation does not provide a direct correspondence to the

structure of the content generated. As a result, strategies for

controlling deep learning generation that we will analyze

have to rely on some external intervention at various entry

points (hooks), such as:

• Input;

• Output;

• Encapsulation/reformulation.

2 Music difficult to distinguish from the original corpus.
3 Additional challenges are analyzed in [2]. 4 Two examples are Markov constraints [31] and factor graphs [30].
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2.2 Sampling

Sampling a model5 to generate content may be an entry

point for control if we introduce constraints on the output

generation. (This is called constraint sampling.) This is

usually implemented by a generate-and-test approach,

where valid solutions are picked from a set of generated

random samples from the model.6 As we will see, a key

issue is how to guide the sampling process in order to fulfill

the objectives (constraints); thus, sampling will be often

combined with other strategies.

2.3 Conditioning

The strategy of conditioning (sometimes also named con-

ditional architecture) is to condition the architecture on

some extra conditioning information, which could be

arbitrary, e.g., a class label or data from other modalities.

Examples are:

• a bass line or a beat structure, in the rhythm generation

system [27];

• a chord progression, in the MidiNet architecture [42];

• a musical genre or an instrument, in the WaveNet

architecture [40];

• a set of positional constraints, in the Anticipation-RNN

architecture [18].

In practice, the conditioning information is usually fed into

the architecture as an additional input layer. Conditioning

is a way to have some degree of parameterized control

over the generation process.

2.3.1 Example 1: WaveNet audio speech and music
generation

The WaveNet architecture by van der Oord et al. [40] is

aimed at generating raw audio waveforms. The architecture

is based on a convolutional feedforward network without

pooling layer.7 It has been experimented on generation for

three audio domains: multi-speaker, text-to-speech (TTS)

and music.

The WaveNet architecture uses conditioning as a way to

guide the generation, by adding an additional tag as a

conditioning input Two options are considered: global

conditioning or local conditioning, depending on whether

the conditioning input is shared for all time steps or is

specific to each time step.

An example of application of conditioning WaveNet for

a text-to-speech application domain is to feed linguistic

features (e.g., North American English or Mandarin Chi-

nese speakers) in order to generate speech with a better

prosody. The authors also report preliminary experiments

on conditioning music models to generate music given a set

of tags specifying, e.g., genre or instruments.

2.3.2 Example 2: Anticipation-RNN Bach melody
generation

Hadjeres and Nielsen propose a system named Anticipa-

tion-RNN [18] for generating melodies with unary con-

straints on notes (to enforce a given note at a given time

position to have a given value). The limitation when using

a standard note-to-note iterative strategy for generation by

a recurrent network is that enforcing the constraint at a

certain time step may retrospectively invalidate the distri-

bution of the previously generated items, as shown in [31].

The idea is to condition the recurrent network (RNN) on

some information summarizing the set of further (in time)

constraints as a way to anticipate oncoming constraints, in

order to generate notes with a correct distribution.

Therefore, a second RNN architecture,8 named Con-

straint-RNN, is used and it functions backward in time and

its outputs are used as additional inputs of the main RNN

(named Token-RNN), resulting in the architecture shown at

Fig. 1, with:

• ci being a positional constraint;

• oi being the output at index i (after i iterations) of

Constraint-RNN – it summarizes constraint information

from step i to final step (end of the sequence) N. It will

be concatenated (�) to input si�1 of Token-RNN in

order to predict next item si.

The architecture has been tested on a corpus of melodies

taken from J. S. Bach chorales. Three examples of melo-

dies generated with the same set of positional constraints

(indicated with notes in green within a rectangle) are

shown at Fig. 2. The model is indeed able to anticipate

each positional constraint by adjusting its direction toward

the target (lower-pitched or higher-pitched note).

5 The model can be stochastic, such as a restricted Boltzmann

machine (RBM) [15], or deterministic, such as a feedforward or a

recurrent network. In that latter case, it is common practice to sample

from the softmax output in order to introduce variability for the

generated content [2].
6 Note that this may be a very costly process and moreover with no

guarantee to succeed.
7 An important specificity of the architecture (not discussed here) is

the notion of dilated convolution, where convolution filters are

incrementally dilated in order to provide very large receptive fields

with just a few layers, while preserving input resolution and

computational efficiency [40]. 8 Both are two-layer LSTMs [22].
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2.4 Input manipulation

The strategy of input manipulation has been pioneered for

images by DeepDream [28]. The idea is that the initial

input content, or a brand new (randomly generated) input

content, is incrementally manipulated in order to match a

target property. Note that control of the generation is

indirect, as it is not being applied to the output but to the

input, before generation. Examples are:

• maximizing the activation of a specific unit, to exag-

gerate some visual element specific to this unit, in

DeepDream [28];

• maximizing the similarity to a given target, to create a

consonant melody, in DeepHear [38];

• maximizing both the content similarity to some initial

image and the style similarity to a reference style

image, to perform style transfer [14];

• maximizing the similarity of structure to some refer-

ence music, to perform style imposition [26].

Interestingly, this is done by reusing standard training

mechanisms, namely back-propagation to compute the

gradients, as well as gradient descent to minimize the cost.

2.4.1 Example 1: DeepHear ragtime melody
accompaniment generation

The DeepHear architecture by Sun [38] is aimed at gen-

erating ragtime jazz melodies. The architecture has 4-layer

stacked autoencoders (that is 4 hierarchically nested

autoencoders), with a decreasing number of hidden units,

down to 16 units.

At first, the model is trained9 on a corpus of 600

measures of Scott Joplin’s ragtime music, split into

4-measure long segments. Generation is performed by

inputting random data as the seed into the 16 bottleneck

hidden-layer units and then by feedforwarding it into the

chain of decoders to produce an output (in the same

4-measure long format of the training examples), as

shown in Fig. 3.

In addition to the generation of new melodies, DeepHear

is used with a different objective: to harmonize a melody,

while using the same architecture as well as what has

Fig. 2 Examples of melodies generated by Anticipation-RNN. Reproduced from [18] with permission of the authors

Fig. 1 Anticipation-RNN

architecture. Reproduced from

[18] with permission of the

authors

9 Autoencoders are trained with the same data as input and output

and therefore have to discover significative features in order to be able

to reconstruct the compressed data.
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already been learnt.10 The idea is to find a label instance of

the set of features, i.e., a set of values for the 16 units of the

bottleneck hidden layer of the stacked autoencoders which

will result in some decoded output matching as much as

possible a given melody. A simple distance function is

defined to represent the dissimilarity between two melodies

(in practice, the number of not matched notes). Then a gra-

dient descent is conducted onto the variables of the embed-

ding, guided by the gradients corresponding to the distance

function until finding a sufficiently similar decoded melody.

Although this is not a real counterpoint but rather the gen-

eration of a similar (consonant) melody, the results do pro-

duce some naive counterpoint with a ragtime flavor.

2.4.2 Example 2: VRAE video game melody generation

Note that input manipulation of the hidden-layer units of an

autoencoder (or stacked autoencoders) bears some analogy

with variational autoencoders,11 such as, for instance, the

VRAE (variational recurrent autoencoder) architecture of

Fabius and van Amersfoort [10]. Indeed in both cases,

there is some exploration of possible values for the hidden

units (latent variables) in order to generate variations of

musical content by the decoder (or the chain of decoders).

The important difference is that in the case of variational

autoencoders, the exploration of values is user-directed,

although it could be guided by some principle, for example

an interpolation to create a medley of two songs, or the

addition or subtraction of an attribute vector capturing a

given characteristic (e.g., high density of notes as in

Fig. 4). In the case of input manipulation, the exploration

of values is automatically guided by the gradient-following

mechanism, the user having priorly specified a cost func-

tion to be minimized or an objective to be maximized.

2.4.3 Example 3: Image and audio style transfer

Style transfer has been pioneered by Gatys et al. [14] for

images. The idea, shown in Fig. 5, is to use a deep learning

architecture to independently capture:

• the features of a first image (named the content),

• and the style (the correlations between features) of a

second image (named the style),

• and then, to use gradient following to guide the

incremental modification of an initially random third

image, with the double objective of matching both the

content and the style descriptions.12

Transposing this style transfer technique to music was a

natural direction, and it has been experimented independently

for audio, e.g., in [13] and [39], both using a spectrogram (and

not a direct wave signal) as input. The result is effective, but

not as interesting as in the case of painting style transfer,

being somehow more similar to a sound merging of the style

and of the content. We believe that this is because of the

anisotropy13 of global music content representation.

Fig. 4 Example of melody generated (bottom) by MusicVAE by adding

a ‘‘high note density’’ attribute vector to the latent space of an existing

melody (top). Reproduced from [35] with permission of the authors
Fig. 3 Generation in DeepHear. Extension of a figure reproduced

from [38] with permission of the author

10 Note that this is a simple example of transfer learning [15], with a

same domain and a same training, but for a different task.
11 A variational autoencoder (VAE) [25] is an autoencoder with the

added constraint that the encoded representation (its latent variables)

follows some prior probability distribution (usually a Gaussian

distribution). Therefore, a variational autoencoder is able to learn a

‘‘smooth’’ latent space mapping to realistic examples.

12 Note that one may balance between content and style objectives

through some a and b parameters in the Ltotal combined loss function

shown at top of Fig. 5.
13 In the case of an image, the correlations between visual elements

(pixels) are equivalent whatever the direction (horizontal axis,

vertical axis, diagonal axis or any arbitrary direction); in other

words, correlations are isotropic. In the case of a global representation

of musical content (see, e.g., Fig. 12), where the horizontal dimension

represents time and the vertical dimension represents the notes,

horizontal correlations represent temporal correlations and vertical

correlations represent harmonic correlations, which have very differ-

ent nature.
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2.4.4 Example 4: C-RBM Mozart sonata generation

The C-RBM architecture proposed by Lattner et al. [26]

uses a restricted Boltzmann machine (RBM) to learn the

local structure, seen as the musical texture, of a corpus of

musical pieces (in practice, Mozart sonatas). The archi-

tecture is convolutional (only) on the time dimension, in

order to model temporally invariant motives, but not pitch-

invariant motives which would break the notion of tonality.

The main idea is in imposing by constraints onto the

generated piece some more global structure (form, e.g.,

AABA, as well as tonality), seen as a structural template

inspired from the reference of an existing musical piece.

This is called structure imposition,14 also coined as tem-

plagiarism (short for template plagiarism) by Hofstadter

[23].

Generation is done by sampling from the RBM with

three types of constraints:

• Self-similarity, to specify a global structure (e.g.,

AABA) in the generated music piece. This is modeled

by minimizing the distance between the self-similarity

matrices of the reference target and of the intermediate

solution;

• Tonality constraint, to specify a key (tonality). To

estimate the key in a given temporal window, the

distribution of pitch classes is compared with the key

profiles of the reference;

• Meter constraint, to impose a specific meter (also

named a time signature, e.g., 4/4) and its related

rhythmic pattern (e.g., accent on the third beat). The

relative occurrence of note onsets within a measure is

constrained to follow that of the reference.

Generation is performed via constrained sampling, a

mechanism to restrict the set of possible solutions in the

sampling process according to some predefined constraints.

The principle of the process (illustrated in Fig. 6) is as

follows: At first, a sample is randomly initialized, follow-

ing the standard uniform distribution. A step of constrained

sampling is composed of n runs of gradient descent to

impose the high-level structure, followed by p runs of se-

lective Gibbs sampling to selectively realign the sample

onto the learnt distribution. A simulated annealing algo-

rithm is applied in order to decrease exploration in relation

to a decrease in variance over solutions.

Results are quite convincing. However, as discussed by

the authors, their approach is not exact, as for instance by

the Markov constraints approach proposed in [31].

Fig. 5 Style transfer full architecture/process. Reproduced with permission of the authors

14 Note that this also some kind of style transfer [5], although of a

high-level structure and not a low-level timbre as in Sect. 2.4.3.
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2.5 Reinforcement

The strategy of reinforcement is to reformulate the gener-

ation of musical content as a reinforcement learning

problem, while using the output of a trained recurrent

network as an objective and adding user-defined con-

straints, e.g., some tonality rules according to music theory,

as an additional objective.

Let us, at first, quickly remind the basic concepts of

reinforcement learning, illustrated in Fig. 7:

• An agent sequentially selects and performs actions

within an environment;

• Each action performed brings it to a new state,

• with the feedback (by the environment) of a reward

(reinforcement signal), which represents some ade-

quation of the action to the environment (the

situation).

• The objective of reinforcement learning is for the agent

to learn a near-optimal policy (sequence of actions) in

order to maximize its cumulated rewards (named its

gain).

Generation of a melody may be formulated as follows (as

in Fig. 8): The state s represents the musical content (a

partial melody) generated so far and the action a represents

the selection of next note to be generated.

2.5.1 Example: RL-tuner melody generation

The reinforcement strategy has been pioneered by the RL-

tuner architecture by Jaques et al. [24]. The architecture,

illustrated in Fig. 8, consists in two reinforcement learning

architectures, named Q Network and Target Q Network,15

and two recurrent network (RNN) architectures, named

Note RNN and Reward RNN.

After training Note RNN on the corpus, a fixed copy

named Reward RNN is used as a reference for the rein-

forcement learning architecture. The reward r of Q Net-

work is defined as a combination of two objectives:

• Adherence to what has been learnt, by measuring the

similarity of the action selected (next note to be

Fig. 6 C-RBM architecture

Fig. 7 Reinforcement learning (conceptual model)—reproduced from

[7]

15 They use a deep learning implementation of the Q-learning

algorithm. Q Network is trained in parallel to Target Q Network

which estimates the value of the gain [41].
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generated) to the note predicted by Reward RNN in a

similar state (partial melody generated so far);

• Adherence to user-defined constraints (e.g., consistency

with current tonality, avoidance of excessive repeti-

tions), by measuring how well they are fulfilled.

Although preliminary, results are convincing. Note that this

strategy has the potential for adaptive generation by

incorporating feedback from the user.

2.6 Unit selection

The unit selection strategy relies in querying successive

musical units (e.g., a melody within a measure) from a

database and in concatenating them in order to gen-

erate some sequence according to some user

characteristics.

2.6.1 Example: Unit selection and concatenation melody
generation

This strategy has been pioneered by Bretan et al. [1] and is

actually inspired by a technique commonly used in text-to-

speech (TTS) systems and adapted in order to generate

melodies. (The corpus used is diverse and includes jazz,

folk and rock). The key process here is unit selection (in

general each unit is one measure long), based on two cri-

teria: semantic relevance and concatenation cost. The

architecture includes one autoencoder and two LSTM re-

current networks.

The first preparation phase is feature extraction of

musical units. Ten manually handcrafted features are

considered, following a bag-of-words (BOW) approach

(e.g., counts of a certain pitch class, counts of a certain

pitch class rhythm tuple, if first note is tied to previous

measure), resulting in 9675 actual features.

The key of the generation is the process of selection of a

best (or at least, very good) successor candidate to a given

musical unit. Two criteria are considered:

• Successor semantic relevance – It is based on a model

of transition between units, as learnt by a LSTM

recurrent network. In other words, that relevance is

based on the distance to the (ideal) next unit as

predicted by the model;

• Concatenation cost – It is based on another model of

transition,16 this time between the last note of the unit

and the first note of the next unit, as learnt by another

LSTM recurrent network.

The combination of the two criteria (illustrated in Fig. 9) is

handled by a heuristic-based dynamic ranking process. As for a

recurrent network, generation is iterated in order to create, unit

by unit (measure by measure), an arbitrary length melody.

Note that the unit selection strategy actually provides

entry points for control, as one may extend the selection

Fig. 9 Unit selection based on semantic cost

Fig. 8 RL-tuner architecture

16 At a more fine-grained level, note-to-note level, than the previous

one.
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framework based on two criteria: successor semantic rel-

evance and concatenation cost with user-defined con-

straints/criteria.

3 Structure

Another challenge is that most of the existing systems

have a tendency to generate music with ‘‘no sense of

direction.’’ In other words, although the style of the

generated music corresponds to the corpus learnt, the

music lacks some structure and appears to wander with-

out some higher organization, as opposed to human-

composed music which usually exhibits some global

organization (usually named a form) and identified com-

ponents, such as:

• Overture, Allegro, Adagio or Finale for classical music;

• AABA or AAB in Jazz;

• Refrain, Verse or Bridge for songs.

Note that there are various possible levels of structure. For

instance, an example of finer grain structure is at the level

of melodic patterns that can be repeated, often transposed

in order to adapt to a new harmonic structure.

Reinforcement (as used by RL-tuner in Sect. 2.5.1) and

structure imposition (as used by C-RBM in Sect. 2.4.4) are

approaches to enforce some constraints, possibly high

level, onto the generation. An alternative top-down

approach is followed by the unit selection strategy (see

Sect. 2.6), by incrementally generating an abstract

sequence structure and filling it with musical units,

although the structure is currently flat. Therefore, a natural

direction is to explicitly consider and process different

levels (hierarchies) of temporality and of structure.

3.1 Example: MusicVAE multivoice generation

Roberts et al. propose a hierarchical architecture named

MusicVAE [36] following the principles of a variational

autoencoder encapsulating recurrent networks (RNNs, in

practice LSTMs) such as VRAE introduced in Sect. 2.4.2,

with two differences:

• the encoder is a bidirectional RNN;

• the decoder is a hierarchical two-level RNN composed

of:

• a high-level RNN named the Conductor producing a

sequence of embeddings;

• a bottom-layer RNN using each embedding as an

initial state17 and also as an additional input

concatenated to its previously generated token to

produce each subsequence.

The resulting architecture is illustrated in Fig. 10. The

authors report that an equivalent ‘‘flat’’ (without hierarchy)

architecture, although accurate in modeling the style in the

case of 2-measure long examples, turned out inaccurate in

the case of 16-measure long examples, with a 27% error

increase for the autoencoder reconstruction. Some prelim-

inary evaluation has also been conducted with a compar-

ison by listeners of three versions: flat architecture,

hierarchical architecture and real music for three types of

music: melody, trio and drums, showing a very significant

gain with the hierarchical architecture.

Fig. 10 MusicVAE architecture.

Reproduced from [36] with

permission of the authors

17 In order to prioritize the Conductor RNN over the bottom-layer

RNN, its initial state is reinitialized with the decoder-generated

embedding for each new subsequence.
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4 Creativity

The issue of the creativity of the music generated is not

only an artistic issue, but also an economic one, because it

raises a copyright issue.18

One approach is a posteriori, by ensuring that the gen-

erated music is not too similar (e.g., in not having recopied

a significant amount of notes of a melody) to an existing

piece of music. To this aim, existing tools to detect simi-

larities in texts may be used.

Another approach, more systematic but more challeng-

ing, is a priori, by ensuring that the music generated will

not recopy a given portion of music from the training

corpus.19 A solution for music generation from Markov

chains has been proposed [32]. It is based on a variable-

order Markov model and constraints over the order of the

generation through some min-order and max-order con-

straints, in order to attain some sweet spot between junk

and plagiarism. However, there is none yet equivalent

solution for deep learning architectures.

4.1 Conditioning

4.1.1 Example: MidiNet melody generation

The MidiNet architecture by Yang et al. [42], inspired by

WaveNet (see Sect. 2.3.1), is based on generative adver-

sarial networks (GAN) [16] (see Sect. 4.2). It includes a

conditioning mechanism incorporating history information

(melody as well as chords) from previous measures. The

authors discuss two methods to control creativity:

• by restricting the conditioning by inserting the condi-

tioning data only in the intermediate convolution layers

of the generator architecture;

• by decreasing the values of the two control parameters

of feature matching regularization, in order to less

enforce the distributions of real and generated data to

be close.

These experiments are interesting although the approach

remains at the level of some ad hoc tuning of some hyper-

parameters of the architecture.

4.2 Creative adversarial networks

Another more systematic and conceptual direction is the

concept of creative adversarial networks (CAN) proposed

by Elgammal et al. [9], as an extension of generative

adversarial networks (GAN) architecture, by Goodfellow

et al. [16], which trains simultaneously two networks:

• a Generative model (or generator) G, whose objective

is to transform random noise vectors into faked

samples, which resemble real samples drawn from a

distribution of real images; and

• a Discriminative model (or discriminator) D, that

estimates the probability that a sample came from the

training data rather than from G.

The generator is then able to produce user-appealing syn-

thetic samples (e.g., images or music) from noise vectors.

The discriminator may then be discarded.

Elgammal et al. propose in [9] to extend a GAN archi-

tecture into a creative adversarial networks (CAN) archi-

tecture, shown in Fig. 11, where the generator receives

from the discriminator not just one but two signals:

• the first signal, analog to the case of the standard GAN,

specifies how the discriminator believes that the

generated item comes from the training dataset of real

art pieces;

• the second signal is about how easily the discriminator

can classify the generated item into established styles.

If there is some strong ambiguity (i.e., the various

classes are equiprobable), this means that the generated

item is difficult to fit within the existing art styles.

These two signals are thus contradictory forces and push

the generator to explore the space for generating items that

are at the same time close to the distribution of the existing art

Fig. 11 Creative adversarial

networks (CAN) architecture

18 On this issue, see a recent paper [6].
19 Note that this addresses the issue of avoiding a significant recopy

from the training corpus, but it does not prevent reinventing an

existing music outside of the training corpus.
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pieces and with some style originality. Note that this

approach assumes the existence of a prior style classification

and it also reduces the idea of creativity to exploring new

styles (which indeed has some grounding in the art history).

5 Interactivity

In most of the existing systems, the generation is auto-

mated, with little or no interactivity. As a result, local

modification and regeneration of a musical content is

usually not supported, the only available option being a

whole regeneration (and the loss of previous attempt). This

is in contrast to the way a musician works, with successive

partial refinement and adaptation of a composition.20

Therefore, some requisites for interactivity are the incre-

mentality and the locality of the generation, i.e., the way

the variables of the musical content are instantiated.

5.1 Instantiation strategies

Let us consider the example of the generation of a melody.

The two most common strategies (illustrated in Fig. 12)21

for instantiating the notes of the melody are:

• Single-step/global – A global representation including

all time steps is generated in a single step by a

feedforward architecture. An example is DeepHear [38]

in Sect. 2.4.1.

• Iterative/time slice – A time slice representation

corresponding to a single time step is iteratively

generated by a recurrent architecture (RNN). An

example is Anticipation-RNN [18] in Sect. 2.3.2.

Fig. 13 DeepBach architecture

20 An example of interactive composition environment is FlowCom-

poser [33]. It is based on various techniques such as Markov models,

constraint solving and rules.

Fig. 12 Strategies for instantiating notes during generation

21 The representation shown is of type piano roll with two

simultaneous voices (tracks). Parts already processed are in light

gray; parts being currently processed have a thick line and are pointed

as ‘‘current’’; notes to be played are in blue.
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Let us now consider an alternative strategy, incremental

variable instantiation. It relies on a global representation

including all time steps. But, as opposed to single-step/-

global generation, generation is done incrementally by

progressively instantiating and refining values of variables

(notes), in a non-deterministic order. Thus, it is possible to

generate or to regenerate only an arbitrary part of the

musical content, for a specific time interval and/or for a

specific subset of voices (shown as selective regeneration in

Fig. 12), without regenerating the whole content.

5.2 Example: DeepBach chorale generation

This incremental instantiation strategy has been used by

Hadjeres et al. in the DeepBach architecture [19] for gen-

eration of Bach chorales.22 The architecture, shown in

Fig. 13, combines two recurrent and two feedforward

networks. As opposed to standard use of recurrent net-

works, where a single time direction is considered, Deep-

Bach architecture considers the two directions forward in

time and backward in time. Therefore, two recurrent net-

works (more precisely, LSTM) are used, one summing up

past information and the other summing up information

coming from the future, together with a non-recurrent

network for notes occurring at the same time. Their three

outputs are merged and passed as the input of a final

feedforward neural network. The first 4 lines of the

example data on top of Fig. 13 correspond to the 4 voi-

ces.23 Actually, this architecture is replicated 4 times, one

for each voice (4 in a chorale).

Training, as well as generation, is not done in the con-

ventional way for neural networks. The objective is to

predict the value of the current note for a given voice

(shown with a red ? on top center of Fig. 13), using as

information surrounding contextual notes. The training set

is formed online by repeatedly randomly selecting a note in

a voice from an example of the corpus and its surrounding

context. Generation is done by sampling, using a pseudo-

Gibbs sampling incremental and iterative algorithm (shown

in Fig. 14; see details in [19]) to produce a set of values

(each note) of a polyphony, following the distribution that

the network has learnt.

The advantage of this method is that generation may be

tailored. For example, if the user changes only one or two

measures of the soprano voice, he can resample only the

corresponding counterpoint voices for these measures.

The user interface of DeepBach, shown in Fig. 15,

allows the user to interactively select and control global or

partial (re)generation of chorales. It opens up new ways of

composing Bach-like chorales for non-experts in an inter-

active manner, similarly to what is proposed by

FlowComposer for lead sheets [33]. It is implemented as a

plug-in for the MuseScore music editor.

6 Conclusion

The use of deep learning architectures and techniques for

the generation of music (as well as other artistic contents)

is a growing area of research. However, there remain open

challenges such as control, structure, creativity and inter-

activity, that standard techniques do not directly address. In

this article, we have discussed a list of challenges, intro-

duced some strategies to address them and have illustrated

them through examples of actual architectures.24 We hope

that the analysis presented in this article will help in better

understanding the issues and possible solutions and there-

fore may contribute to the general research agenda of deep

learning-based music generation.
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Fig. 14 DeepBach incremental

generation/sampling algorithm

22 J. S. Bach chose various given melodies for a soprano and

composed the three additional ones (for alto, tenor and bass) in a

counterpoint manner.
23 The two bottom lines correspond to metadata (fermata and beat

information), not detailed here.

Fig. 15 DeepBach user interface

24 A more complete survey and analysis is [2].
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